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SUMMARY

The paper deals with the finite-volume particle method (FVPM), a relatively new method for solving
hyperbolic systems of conservation laws. A general formulation of the method for bounded and moving
domains is presented. Furthermore, an approximation property of the reconstruction formula is proved.
Then, based on a two-dimensional test problem posed on a moving domain, a special Ansatz for the
movement of the particles is proposed. The obtained numerical results indicate that this method is well
suited for such problems, and thus a first step to apply the FVPM to real industrial problems involving
free boundaries or fluid–structure interaction is taken. Finally, we perform a numerical convergence study
for a shock tube problem and a simple linear advection equation. Copyright q 2008 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

The finite-volume particle method (FVPM) is a relatively new meshless method for solving hyper-
bolic systems of conservation laws, firstly developed in 1998 by Hietel et al. [1]. There the FVPM
is formulated for a system of conservation laws in the spatial domain �=Rd and shown to be
conservative. Later, Junk and Struckmeier [2] proposed a more stable discretization and proved
a Lax–Wendroff-type consistency result for scalar conservation laws in �=R. The motivation to
develop this new scheme was to unify the advantages of finite-volume methods (FVMs) and particle
methods in one scheme. The FVPM combines the generic features of a finite-volume scheme and
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946 D. TELEAGA AND J. STRUCKMEIER

a particle method, namely the concept of a numerical flux function and the flow description using
moving particles.

This method was also the subject of concern in [3–10]. The extension of the projection tech-
nique for incompressible flows to the FVPM is done in [4, 5]. Isotropic and anisotropic adaptive
strategies are investigated in [7]. Moreover, a coupling approach between the classical FVM and
the FVPM is proposed in [10]. In [6] an application of the FVPM to a problem with moving
boundary in one space dimension is given. Thus, the scheme was mainly tested on one- and
two-dimensional problems posed on fixed domains, problems where also the mesh-based methods
work. However, being a mesh-free method, the FVPM is intended for problems where a mesh-based
method may fail, such as problems with moving or free boundaries or fluid–structure interaction
problems.

Here we wish to take a step forward in applying the FVPM to real industrial problems involving
free boundaries or fluid–structure interaction. Therefore, after deriving the FVPM on fixed and
bounded domains, we formulate it on moving domains and apply it to a two-dimensional test
problem with moving boundary. With this example, we also wish to exploit an advantage of
the FVPM over SPH methods, namely the fact that in FVPM the particles may move in a non-
Lagrangian way.

We end up with a numerical convergence study of the FVPM for a shock tube problem and a
simple linear advection equation. For these cases our FVPMwill not be competitive with grid-based
finite-volume schemes, which we even observe in the results of the estimated order of convergence
(EOC).

1.1. Derivation of FVPM on fixed domains

Here we follow the derivation made in [2], but for a system of conservation laws on a bounded
domain �⊂ Rd .

We consider conservation laws expressed in the form

�tu+∇ ·F(u)=0 ∀x∈�⊂ Rd , t>0 (1)

with initial conditions u(x,0)=u0(x), ∀x∈�, and with suitable boundary conditions, where
�⊂ Rd is a bounded domain, u(x, t)∈ Rm , m>0 denotes the vector of conservative quantities,
and F(u(x, t)) denotes the flux function of the conservation law.

A natural approach to discretize conservation laws is to evaluate the weak formulation of (1)
with a discrete set of test functions �i , i=1, . . . ,N . In classical FVMs [11], the test functions are
taken as the characteristic functions I�i (x) of the control volumes �i . The discrete quantities are
obtained from cell averages. Note that the characteristic functions form a partition of unity, i.e.∑N

i=1 I�i (x)=1,∀x∈�.
A similar approach is used in the following, but we introduce a different set of test functions.

Since we wish to derive a mesh-free method, we should not make use of a mesh. Therefore,
the conservative variables are approximated at each time step by a finite set of particles located
in the spatial domain �. From this point of view, the FVPM is a particle method with particle
positions xi (t), which may be irregularly spaced and moving in time. To each position xi (t), we
associate a function �i (x, t), which we call a particle. As in the finite-volume approach, let {�i :
i=1, . . . ,N } be a partition of unity, but the supports of the functions should overlap. More exactly,
we assume that the particles are smooth functions localized around the particle positions xi (t) and
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satisfy

N∑
i=1

�i (x, t)=1 ∀x∈�, t�0 (2)

We construct this partition of unity as follows:
Taking a Lipschitz-continuous function W : R→ R+ with compact support (otherwise one has

to consider long-range interactions between particles), we define

�i (x, t)=
Wi (x, t)
�(x, t)

(3)

where �(x, t)=∑N
i=1Wi (x, t) and Wi (x, t)=W (x−xi (t)); i=1, . . . ,N . Such a partition of unity

used in the FVPM in the one-dimensional case is shown in Figure 1. It is computed using the
function W , also called smoothing kernel:

W (x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x+h)2, x ∈
[
−h,−h

2

)

−x2+ h2

2
, x ∈

[
−h

2
,
h

2

)

(x−h)2, x ∈
[
h

2
,h

)
0 otherwise

(4)

where the parameter h>0 is the so-called smoothing length.
Now, we test the conservation law (1) against the new set of test functions �i (x, t), i.e. we

consider the weak form given by∫
�
(�tu+∇ ·F(u))�i (x, t)dx=0, i=1, . . . ,N (5)
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Figure 1. A partition of unity used in the FVPM: on the x-axis are indicated the particle positions xi and
around each xi is plotted the function �i .
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948 D. TELEAGA AND J. STRUCKMEIER

which yields the equations

d

dt

∫
�
u�i dx=

∫
�
(F(u) ·∇�i +u�t�i )dx−

∫
��

�iF(u) ·nd� (6)

Note that the boundary term appears only for particles i that are close to the boundary, i.e.
supp�i ∩�� �=0.

Similar to FVMs, one associates with each particle a local average ui (t) through the relation

ui (t)= 1

Vi (t)

∫
�
u(x, t)�i (x, t)dx (7)

where Vi (t) is the time-dependent volume of a particle i given by

Vi (t)=
∫

�
�i (x, t)dx (8)

Using definition (3), one may obtain [1, 2] the following equations from (6):

d

dt
(Viui )=

N∑
j=1

∫
�
((F(u)−uẋi )C j i −(F(u)−uẋ j )Ci j )dx−Bi (9)

where Ci j is a function localized on the intersection of the supports of particle i and particle j
given by

Ci j (x, t)= �i (x, t)
�(x, t)

∇Wj (x, t) ∀i, j =1, . . . ,N (10)

and Bi =
∫
�� �iF(u) ·nd� denotes the boundary term. The treatment of a boundary particle i

consists of two parts: first we cut off that part of its support, which lies outside the domain � and
then we discretize the corresponding boundary term such that the given boundary conditions are
satisfied. In the case of inlet or outlet boundary conditions, we have∫

��
�iF(u) ·nd�≈F(u∗

i )

∫
��

�ind�=−F(u∗
i )

∑
j∈N (i)

bi j (11)

where we used relation (23) and u∗
i approximates u on �i ∩��. At a solid wall boundary, the

normal velocity of a compressible flow is zero. As a consequence, all convective flux components
through the solid wall will vanish in the computation of the flux terms and we obtain

∫
��

�iF(u) ·nd�≈

⎛
⎜⎜⎜⎝

0

−pi
∑
j
bi j

0

⎞
⎟⎟⎟⎠ (12)

For more details, see [9].
For abbreviation, we introduce the modified flux

G(t, ẋ,u)=F(u)−u· ẋ (13)
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where the particle movement ẋ is given by ẋ(t)=a(x, t), a(x, t)∈C0(R+,C1(Rd)) being a given
velocity field. The modified flux G consists of the flux of the given conservation law, as well of
a contribution u·a due to the particle movement with velocity a.

Remark
The velocity a of the particles is not a Lagrangian-type velocity, but an almost arbitrarily chosen
vector function. The vector a should be in such a way that during the movement of the particles
their supports always cover the domain completely.

Now, assuming that u varies only slightly around a certain, but fixed ū on the intersection of
the supports of �i and � j , and that ẋi ≈ ẋ j := ¯̇x, with, e.g. ¯̇x=(ẋi + ẋ j )/2, we have

d

dt
(Viui ) ≈ −

N∑
j=1

(F(ū)− ū ¯̇x)
∫

�
(Ci j −C j i )dx−Bi

= −
N∑
j=1

|bi j |(F(ū)− ū ¯̇x) ·ni j −Bi

where

bi j (t)=ci j (t)−c j i (t) and ni j =
bi j
|bi j |

(14)

with ci j (t)=
∫
�Ci j (x, t)dx.

The flux is approximated in terms of the discrete values with the help of a numerical flux function
gi j =g(t,xi ,ui ,x j ,u j ,ni j ) of the modified flux function G(t, ẋ,u), i.e. we use the approximation

(F(ū)− ū ¯̇x) ·ni j ≈gi j

Remark
The numerical flux function g can be any numerical flux function used in FVM, but it has to
be consistent with the modified flux function G, not with F. In the case considered above, if
ẋ(t)=a(x, t), i.e. ẋ(t) �=a(x, t,u), one can easily modify a numerical flux function consistent with
F to generate a flux function consistent with G(t, ẋ,u)=F(u)−u· ẋ.

One ends up with the following system of ordinary differential equations (ODEs):

d

dt
(Viui )=−

N∑
j=1

|bi j |gi j −Bi (15)

with the initial condition

ui (0)= 1

Vi (0)

∫
�
u0(x)�i (x,0)dx (16)

Using an explicit Euler discretization of the time derivative, the resulting scheme has a structure
similar to that of an FVM scheme, namely

V n+1
i un+1

i =V n
i u

n
i −�t

∑
j∈N (i)

|bni j |gni j −Bi (17)
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950 D. TELEAGA AND J. STRUCKMEIER

with u0i =1/V 0
i

∫
�u0(x)�i (x,0)dx. The set N (i) denotes the neighbours of a particle i , i.e. the

particles j with the property that supp� j ∩supp�i �=∅.
A natural reconstruction of a function from the discrete values is given by

ũ(x, t)=
N∑
i=1

uni �i (x, t)I[tn,tn+1)(t), x∈�, t ∈[0,T ] (18)

Finally one should note that (17) contains two unknowns at the time level n+1, namely un+1
i

and V n+1
i . Thus, we need an additional equation for the volumes of particles. There are two

alternative approaches to find V n+1
i . One may apply numerical integration to compute V n+1

i from
definition (8), or one may obtain the additional equation for V n+1

i by differentiating Equation (8)
with respect to t , namely

V̇i (t)= ∑
j∈N (i)

(ci j ẋ j −c j i ẋi ) (19)

In practice we choose the first approach to compute the volumes V n+1
i , although there is no

advantage or disadvantage of one approach over the other one.

1.2. Some properties of the FVPM

As one can note from the previous derivation of the FVPM, this scheme is defined by the following
factors: the position of the particles xi , the smoothing kernel W , the smoothing length h, the
velocity of the particles a and the numerical flux function g. Geometrical information about the
particles and about their relative position is carried by the coefficients bi j . Therefore, they are also
called geometrical coefficients. Only from formula (17), one would say that they play an important
role in the scheme. Indeed, they have a significant influence on the properties of the method. Their
heuristic interpretation (see e.g. [4]) shows the similarity between the FVPM and the classical
finite-volume approach.

Therefore, before presenting the properties of scheme (15), we remember some important
properties of the geometrical coefficients bi j .

Proposition 1
The coefficients bi j satisfy

bi j =−b j i ∀i, j =1, . . . ,N (20)

bi j =0 if supp�i ∩supp� j =∅ (21)

bi i =0 ∀i=1, . . . ,N (22)

and

∑
j
bi j =

⎧⎪⎨
⎪⎩
0 if supp�i ∩��=∅
−

∫
��

�ind� if supp�i ∩�� �=∅ (23)

Corollary 1
In the non-moving case, i.e. when ẋ=0, property (23) is sufficient to preserve constant states.
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Proofs of the above properties may be found in [9].
The properties of scheme (15) are mainly proved for the one-dimensional case and a scalar

conservation law, such as a Lax–Wendroff-type consistency result in [2]. Monotonicity of the
scheme, under a CFL-like condition, and an L∞-stability for finite times of the approximate solution
ũ was obtained in [8], also for one-dimensional scalar conservation laws. Only the conservativity
of the method is proved in the general case.

Provided that the coefficients bi j satisfy the skew symmetry condition (20) and that the numerical
flux function g is conservative, scheme (15) is conservative in the sense of a classical FVM, i.e.

d

dt

(
N∑
i=1

Viui

)
=−

∫
��

F(u) ·nd� (24)

Here we wish to give an approximation property of the reconstruction formula (18) for a
scalar conservation law on a two-dimensional domain �⊂ R2. One may study in which sense,
for example, u0 is approximated by ũ(x,0)=∑

i ui (0)�i (x,0), where ui (0) are the local averages
1/Vi (0)

∫
u0(x)�i (x,0)dx. A similar approximation result is also given in [2], but for another

norm, x ∈ R and for u∈C1
0(R×R+). Here we apply the convergence results obtained by Babuska

and Melenk in [12] for the partition of unity method (PUM).

Theorem 1 (Approximation property)
Let �⊂ R2 be an open set, {�i } be an open cover of � satisfying a pointwise overlap condition

∃M ∈N :∀x∈�, #{i |x ∈�i }�M (25)

and {�i } be a partition of unity subordinate to the cover {�i }, i.e. supp�i ⊂ �̄i ,∀i , satisfying
‖�i‖L∞�C∞ (26)

where C∞ is a constant. Let u∈H1(�) be the function to be approximated and ui :=
1/Vi

∫
�i
u(x)�i (x)dx be the local averages, where Vi =

∫
�i

�i (x)dx. Then ũ(x) :=∑
i ui�i (x)

satisfies

‖u− ũ‖L2(�)�MC2∞Ch‖∇u‖L2(�) (27)

where h=maxi {diam(�i )} is a typical space scale called smoothing length and C is a constant
independent of h.

Proof
The proof of this theorem follows very closely Reference [12]. First we state the following
lemma. �

Lemma 1 (Babuska and Melenk [12])
Let � be an open set and {�i } be an open cover of � satisfying the pointwise overlap condition
(25). Let u, ui ∈H1(�), be such that suppui ⊂�i ∪�. Then∑

i
‖u‖2L2(�i )

�M‖u‖2L2(�)
(28)

∥∥∥∥∑
i
ui

∥∥∥∥2
L2(�)

�M
∑
i

‖ui‖2L2(�i )
(29)
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952 D. TELEAGA AND J. STRUCKMEIER

Using the fact that
∑

i �i ≡1 and formulas (26) and (29), we can express

‖u− ũ‖2L2(�)
=

∥∥∥∥∑
i

�i (u−ui )

∥∥∥∥2
L2(�)

�M
∑
i

‖�i (u−ui )‖2L2(�i )

� MC2∞
∑
i

‖u−ui‖2L2(�i )
(30)

Now we need to estimate ‖u−ui‖L2(�i )
. For this we use the following two lemmas that are similar

to Lemmas 7.12 and 7.16 in [13].
Lemma 2
With the notations and under the assumptions from Theorem 1, we have

|u(x)−ui |�C∞h2

2Vi

∫
�i

1

|x− y| |∇u(y)|dy a.e. on �i (31)

Proof
The proof of this lemma is very similar to that of Lemma 7.16 from [13], where �i ≡1. �

Lemma 3 (Gilbarg and Trudinger [13])
Let �∈(0,1) and V� be an operator on L1(�) defined by

(V� f )(x)=
∫

�
|x− y|2(�−1) f (y)dy (32)

The operator V� maps L p(�) continuously into Lq(�) for any q , 1�q�∞, satisfying 0��=
�(p,q)= p−1−q−1<�. Furthermore, for any f ∈L p(�),

‖V� f ‖q�
(
1−�

�−�

)1−�

(2�)1−�|�|�−�‖ f ‖p (33)

Now, applying Lemma 3 with f =|∇u|∈L2(�i ), since u∈H1(�i ), p=2, �= 1
2 ∈(0,1), q=2

and, hence, �=0, we obtain∥∥∥∥
∫

�i

1

|y−x | |∇u(y)|dy
∥∥∥∥
L2(�i )

�2
√
2�|�i |1/2‖∇u‖L2(�i )

(34)

Using (31) and (34), we obtain

‖u−ui‖L2(�i )
�C∞h2

Vi

√
2�h‖∇u‖L2(�i )

(35)

Moreover, from (30) we obtain

‖u− ũ‖2L2(�)
� MC2∞

∑
i
C2∞

(
h2

Vi

)2

2�h2‖∇u‖2L2(�i )

� MC4∞C2h2
∑
i

‖∇u‖2L2(�i )
�M2C4∞C2h2‖∇u‖2L2(�)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:945–967
DOI: 10.1002/fld



FVPM ON MOVING DOMAINS 953

where we used (28) and the fact that Vi =O(h2). Thus, estimate (27) is obtained, which completes
the proof of Theorem 1.

2. FVPM WITH MOVING BOUNDARIES

In the following we will formulate the method in the general case when the domain � depends on
time, i.e. �=�(t)⊂ Rd . Then a general discussion about how the particles may move in FVPM
will be used further in Section 3.1. Here why a correction procedure for the computation of the
geometrical coefficients is needed will be also explained and a simple correction procedure is
proposed.

2.1. A modified FVPM on moving domains

When the domain � is moving, i.e. its shape is changing with time and thus � depends on time,
i.e. �=�(t), we have to take into account a contribution due to the moving boundary.

Let us assume that the boundary �(t) of the domain �(t) is moving with a velocity b(x, t), i.e.
we can express

�(t)=
{
x(t)|x(t)=x0+

∫ t

0
b(x(�),�)d�,x0∈�0

}
(36)

where �0 is the initial boundary. Then, since the integration volume �(t) changes in time, in
formula (6) there appears a new term:

d

dt

∫
�(t)

u�i dx=
∫

�(t)

d

dt
(u�i )dx+

∫
��(t)

�iu·b·nd�︸ ︷︷ ︸
the new term

=
∫

�(t)
(F(u) ·∇�i +u�t�i )dx−

∫
��(t)

�i (F(u)−u·b︸ ︷︷ ︸) ·nd�
The derivation of the system of ODEs for ui can be continued exactly like in Section 1.1 such
that we obtain the following system:

d

dt
(Viui )=− ∑

j∈N (i)
|bi j |gi j −

∫
��(t)

�i (F(u)−u·b) ·nd� (37)

which differs from (12) only in the boundary term. Even Equation (19) for the volume Vi (t)
changes in this case to

V̇i (t)= ∑
j∈N (i)

(ci j ẋ j −c j i ẋi )+
∫

��(t)
�ib·nd� (38)

However, one may still use Equation (8) for Vi (t).
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2.2. How particles should move

In formula (37) there are two movements incorporated: a, the movement of the particles (through
the numerical flux function g), and b, the movement of the boundary. Now we have to answer the
question: given the velocity field b, how should the particles move?

In contrast to Lagrangian methods, e.g. the smoothed particle hydrodynamics (SPH) method
[14], where particles are moved with the velocity of the fluid, in FVPM the particles are allowed
to move along an almost arbitrary velocity field. Here we wish to exploit this advantage of FVPM,
since there are cases when pure Lagrangian particles lead to severe difficulties, e.g. when solving
problems where shocks are developed [7, 9]. Recognizing that shock waves are generic solutions
of conservation laws, we are looking for non-Lagrangian particle motions.

As noted previously, in FVPM the particles should be moved in such a way that they always cover
the domain. One may also imagine that the particles should be quite homogeneously distributed
in the domain. Otherwise, when, at the same time, there are regions with very high and very low
density of particles, the smoothing length h is either too small (and then holes are developed)
or too large (and then some particles will have a high number of neighbours). In [7], where an
adaptive smoothing length is used, it is shown that large variations in the smoothing length may
lead to instabilities. Hence, beginning with homogeneously distributed particles, we wish to have
a smoothly varying particle distribution.

Based on a two-dimensional test problem posed on a moving domain, a special Ansatz for the
movement of the particles will be proposed.

2.3. A new correction procedure

Since the coefficients bi j are given by integral quantities, see (14), one needs to introduce a
numerical integration technique to compute the geometrical coefficients and this leads to additional
errors, such that conditions (20)–(23) may not be satisfied exactly. However, the properties of the
FVPM heavily rely on the conditions (20)–(23) of the bi j ’s. Furthermore, if (23) is not exactly
satisfied, then constant states will be no longer preserved (see Corollary 1).

Hence, applying a numerical quadrature to compute the geometrical coefficients requires in
the sequel a correction procedure to ensure that the conditions (20)–(23) are satisfied exactly.
See Section 3.2 or [4, 8, 9] for comparing numerical results obtained with and without correction
procedures. First of all one should note that if one uses formula (14), then some properties of bi j ’s
still hold, such as bi i =0, bi j =−b j i , and bi j =0 for non-overlapping particles.

Let us discuss in the following how to ensure condition (23). The basic idea consists in firstly
computing the coefficients b̃i j by rough numerical integration in order to keep the computation

costs as low as possible and then to modify them by an appropriate correction term b̄i j .
A correction procedure given in [8], based on solving an undetermined linear system, works

in general only for one-dimensional problems, since in multidimensional computations it is too
expensive. A second approach, proposed by Keck [4], consists of a fast pairwise correction, where
the defect of each particle is successively shifted to the ‘next’ neighbour while preserving conditions
(20) and (23). For details refer to [4].

Here we will use the following alternative approach. Instead of correcting the coefficients b̃i j
obtained by a numerical quadrature, we add, for all interior particles i , the following term to the
right-hand side of scheme (17):

−�tG(uni ) · b̃
n
ii (39)
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where b̃
n
ii :=−∑

j b̃
n
i j is the defect for the particle i and G is the modified flux (13). Then scheme

(17) becomes

V n+1
i un+1

i =V n
i u

n
i −�t

∑
j∈N (i)

|b̃ni j |gni j −�tG(uni ) · b̃
n
ii (40)

Remember that g is a numerical flux function consistent with G, i.e. g(t,x,u,x,u, n)=G(u) ·n.
In this way, using scheme (40), the constant states are preserved in the non-moving case, even if∑

j b̃i j �=0.
A disadvantage of this approach is that the conservativity of the scheme is lost by adding this

correction term. Indeed, in general, one has

N∑
i=1

V n+1
i un+1

i =
N∑
i=1

V n
i u

n
i −�t

N∑
i=1

G(uni ) · b̃
n
ii �=

N∑
i=1

V n
i u

n
i

Because the defect b̃
n
ii is of the order of the integration error, i.e.

|b̃nii |=O(hs+d−1) (41)

where s�1 is the order of the numerical quadrature used to compute b̃
n
i j , we may express

N∑
i=1

V n+1
i un+1

i =
N∑
i=1

V n
i u

n
i +O(hs)

assuming �t=O(h), which follows from a typical CFL-type condition, as well as N =O(1/hd).
Despite the fact that scheme (40) is only approximately conservative, we will use this modified
FVPM scheme in the numerical computations from Section 3.

3. NUMERICAL EXPERIMENTS

In this section we apply the FVPM scheme (40) to different test problems in order to validate the
method.

To implement an FVPM scheme, one has to start by defining a set of particles in the domain. We
are using uniform or non-uniform distributed and non-moving or moving particles. More precisely,
the domain � is divided firstly into N =nx×ny rectangular cells of size �x×�y, where nx and
ny are the numbers of cells in the x- and y-directions, respectively. Then, if we wish to use uniform
distributed particles, we take a particle i in the middle of the cell, otherwise we let it be randomly
distributed within the cell and we call it a quasi-random particle distribution. Since we choose
�y=�x, further on only �x will appear. If and how particles are moved will be specified later
in each example. The piecewise quadratic kernel (4) is used to obtain a two-dimensional partition
of unity with a tensor product structure.

The next step is to compute the geometrical coefficients bi j using (14). In the particular case
of uniform distributed, non-moving particles and h=�x , coefficients bi j can be computed exactly
[8, 9] and no correction procedure is needed. When using quasi-random particles, firstly we compute
the intersection of the supports of pairwise interacting particles, and then a Gauss quadrature rule
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with 4×4 points is applied to compute bi j . When particles are moving in time, volumes Vi are
computed in each time step from (8) by the same quadrature rule as used for computing bi j .

We use the numerical flux function of LeVeque [11] for computing the term gi j . The solution
is reconstructed on a uniform grid of size �x×�x using formula (18).

3.1. A test problem with moving boundaries

We concentrate now on simulating a flow around an oscillating circle in a spatial two-dimensional
geometry.

The computational domain is given by �(t)=[0,1]×[0,1]\BR(t), where BR(t)={(x, y)∈R2 :
‖x−xc(t), y− yc(t)‖�R} is the ball of center (xc(t), yc(t)) and radius R. Let us denote the
domain’s boundary by ��(t) :=�0∪�R(t), where �0 is the exterior boundary and �R(t) is the
boundary of the moving ball (see Figure 2).

We consider a simple, rigid movement of the ball, although one may consider another types of
movements. In our example the ball is oscillating up and down, for example, with respect to the
following equations:

ẋc(t)=0, xc(0)= x0c (42)

ẏc(t)= A�cos(�t), yc(0)= y0c (43)

where A is the amplitude of the motion and � is the frequency.
For the fluid–structure interaction problem that is considered here, the effects due to viscosity

can be neglected. Hence, the fluid is modeled by Euler’s equations for compressible inviscid flow
[11] and is given by

�tu(x, t)+∇ ·F(u(x, t))=0, x∈�(t) (44)

cy

xc

Γ
R

Γ0

solid wall b.c.

outflow b.c.

outflow b.c.

outflow b.c.

inflow b.c.

0

 1

y

1 x

(t)
(t)

R

(t)

Ω (t)

Figure 2. The computational domain of the test problem.
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where

u=

⎛
⎜⎜⎜⎜⎝

�

�u

�v

�E

⎞
⎟⎟⎟⎟⎠ , f1=

⎛
⎜⎜⎜⎜⎜⎝

�u

�u2+ p

�uv

u(�E+ p)

⎞
⎟⎟⎟⎟⎟⎠ , f2=

⎛
⎜⎜⎜⎜⎜⎝

�v

�uv

�v2+ p

v(�E+ p)

⎞
⎟⎟⎟⎟⎟⎠ , F=(f1, f2)

�,u,v,E , and p denote the density, velocity in the x- and y-directions, total energy, and pressure,
respectively. Equation (44) is closed by the equation of state for a perfect gas: p=(	−1)�(E−
(u2+v2)/2), with 	=1.4.

Equation (44) is completed by the initial condition

u(x,0)=u0(x)=

⎛
⎜⎜⎜⎜⎝

�0

�0u0

�0v0

�0E0

⎞
⎟⎟⎟⎟⎠ , x∈�(t)

where �0=1, p0=1, u0=7/	, v0=0 (corresponding to a supersonic inflow with Ma=5), and E0
is computed from the equation of state, as well as the following boundary conditions:

• inflow boundary conditions on the left part of �0;
• outflow boundary conditions on the rest of �0;
• solid wall boundary conditions on the moving boundary �R(t).

Following the discussion from Section 2.2, we assume that the movement of the particles a is
given by the solution to a Laplace equation with the following boundary conditions: namely zero
velocity at the fixed boundary �0 and the boundary velocity at the moving boundary �R(t):

�a(x, t) = 0, �(t)

a(x, t) = 0, �0

a(x, t) = b, �R(t)

(45)

The boundary velocity b is given by the motion of the ball, i.e. b=(ẋc(t), ẏc(t)), where ẋc(t) and
ẏc(t) are given by (42) and (43), respectively.
In this way, the velocity field a will be smooth and the particles will follow the time-dependent

computational domain, since particles near the boundary move with the boundary and do not get
out of the domain, because the solution a satisfies a maximum principle.

Our approach is very similar to the arbitrary Lagrange–Euler method (ALE-method [15]) and
the spring analogy method [16] used in mesh-based computations on a moving fluid domain. As
in the FVPM, in the ALE method the coordinates are neither fixed (Eulerian) nor move with the
fluid (Lagrangian), but they can move in an arbitrary way. When the boundary is displaced, the
mesh is deformed and mesh cells are squeezed and stretched or maybe even inverted. The spring
analogy is then used in [17] to restore the mesh to a more regular state. In our example, we may
also imagine that the particles are linked between the boundaries through fictitious springs.
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Remark
In our example, since the movement of the boundary is restricted to a rigid body movement of an
isolated object, the whole distribution of particles could be moved with the boundary. In this way,
the particles remain rigid, i.e. there is no relative motion between the particles. The advantage
of this rigid movement is clear: we do not have to recompute every time the coefficients bi j , for
example. However, the rigid movement approach is less general than the one proposed here.

In [9] we have also investigated under which conditions on the motion of the circle and the
smoothing length of the particles no ‘holes’ are developed in the domain. By a ‘hole’ we understand
a space which is not covered by the support of any particle.

Now we present some numerical results concerning this test problem.
If the circle moves periodically up and down, such as specified in (42) and (43), there exists

a periodic solution, i.e. after a few oscillations up and down the flow becomes periodic, with the
same period as the circle’s movement. To see this, we compute the difference between the solution
every time when the circle attains its initial position, moving upwards, i.e. exactly after a complete
period:

ek = ∑
i∈N

|�ki V k
i −�k+1

i V k+1
i |, k=0,1, . . . ,kmax

where kmax=[T/P], P=2�/� is the period of the movement, T is the final time, t0 is the time
when the circle starts to move, �ki =�i (t0+kP), and V k

i =Vi (t0+kP). For this computation, we
choose N =50×50 uniform distributed particles, t0=0, �=10�, A=0.1, P=2�/�=0.2, and
T =4.05. Hence, kmax=20. As can be seen in Figure 3, after around 10 complete oscillations, the
differences ek are so small that the flow can be considered to be periodic.

Now we choose N =100×100 quasi-random distributed and moving particles. The movement
of the circle is as before, i.e. A=0.1 and �=10�. The solution at time T =0.55 is presented in
Figures 4 and 5. In Figure 4(left) one may see the irregular particle positions together with their

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10

10

10

10

k

e
k

Figure 3. Differences ek versus k.
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Figure 4. N =100×100 quasi-random distributed particles and their corresponding density (left) and
isolines of the density (right).
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Figure 5. Isolines of u- (left) and v-velocity components (right) in the same case as in Figure 4.

corresponding density. The solution reconstructed on a uniform grid is shown in Figure 4(right)
(isolines of the density) and Figure 5 (isolines of the velocity components). These results show
that the method also works in the case of a time-dependent domain using irregular distributed and
moving particles.

3.2. A shock tube problem

Here we apply the FVPM to the two-dimensional shock tube problem from inviscid gas dynamics
governed by the Euler equations (44) with the following initial conditions:

�(x, y)=
{

�L, x�0.5

�R, x>0.5
, p(x, y)=

{
pL, x�0.5

pR, x>0.5

v(x, y)=0
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for (x, y)∈[0,1]×[0,1]⊂R2, with parameters suggested by Sod [18]
�L=1, �R=0.125, pL=1, pR=0.1

This problem can be realized experimentally by the sudden breakdown of a diaphragm in a
long one-dimensional tube separating two initial gas states at different pressures and densities. If
viscous effects can be neglected along the tube walls and if an infinitely long tube is considered,
the exact solution to the one-dimensional Euler equations can be obtained on the basis of simple
waves separating regions of uniform conditions [19].

We perform a two-dimensional computation for, in fact, a one-dimensional problem. We expect
to obtain a quasi-one-dimensional solution to the two-dimensional Euler’s equation (44), i.e. the
solution should vary only in the x-direction.

The computations are done using N =100×100 or 500×500 uniformly or quasi-random
distributed particles. The solution is computed at time T =0.15. The coefficients bi j are computed
either exactly or approximately. In the first case, when bi j are computed exactly, we are also using
a layer of ghost cells such that no boundary approximations are made, since on the top and bottom
we apply periodic boundary conditions and on the left and right parts we supply the constant states
from the initial condition. This can be made as long as the shock or rarefaction wave does not
reach the boundary, and this is not the case at T =0.15. In the case when bi j cannot be computed
exactly, we apply the boundary treatment and the correction procedure explained before. On the
top and bottom parts of the domain, we apply the solid wall boundary condition and on the left
and right parts of the boundary we apply the outlet boundary condition. No particular measures
are taken to keep the flow inside the tube one dimensional.

In Figure 6(left), we show the positions of 100×100 quasi-random distributed particles together
with their corresponding densities. Then the solution is reconstructed on a 100×100 uniform grid,
and isolines of the density are shown in Figure 6(right).

As mentioned in Section 1.2, if the coefficients bi j are not corrected such that condition (23) is
satisfied, the constant states are not preserved, as can be seen in Figures 7(left) and 8. Furthermore,
we have also implemented the correction procedure proposed by Keck in [4], and isolines of the
density are shown in Figure 7(right). After a rough comparison between the density obtained using
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Figure 6. N =100×100 quasi-random particles and their corresponding density (left), with h=1.5�x ,
and isolines of the density reconstructed on a uniform grid (right), with our correction procedure.
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Figure 7. Isolines of the density reconstructed on a uniform grid without correcting the geometrical
coefficients (left) and with Keck’s correction procedure (right).
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Figure 8. Cut in the x-direction at the middle of the domain, through the density profiles obtained in
Figures 6(right), 7(left) and (right).

our and Keck’s correction, see Figure 8, we conclude that the results are similar; therefore we will
restrict in the following to our correction procedure.

In Figure 9 we compare the densities obtained with exact and computed coefficients bi j in order
to check the numerical approximation of the coefficients bi j . We used N =500×500 uniform
distributed particles with h=�x . As expected, the results are almost the same.

The influence of the smoothing length h on the solution is shown in Figure 10, where cuts through
the density profile obtained for different h are shown. N =100×100 quasi-random distributed
particles were used. As pointed out in [1] for Burgers’ equation, the FVPM is quite robust when
changing the smoothing length h. Decreasing the smoothing length yields a better resolution of
the waves, without producing oscillations.
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Figure 9. The density obtained with exact and with computed coefficients bi j (left) and a zoomed view
of the shock wave and the contact discontinuity (right).
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Figure 10. Influence of the smoothing length h on the density.

Finally, we compute numerical convergence rates in the discrete L1- and L2-norm for this
problem. The error between the exact solution and the approximate solution is computed for a
sequence of N =20×20, 40×40, . . . ,320×320 quasi-random distributed particles with different
smoothing lengths h. In Table I the errors for the density together with the experimental order of
convergence (EOC) computed from two meshes of size N1=nx1×nx1 and N2=nx2×nx2 as

EOCk = log
|�N1

− �̃N1
|k

|�N2
− �̃N2

|k

/
log

(
nx2
nx1

)
, k=1,2 (46)

are given. In Figure 11 we show the errors versus the number of points in one direction, in order
to synthesize the results from Table I and for a better comparison. As expected, the numerical
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Table I. Discrete L1- and L2-errors of the density for the shock tube problem, for different h.

N h=�x |�−�̃|1 EOC1 |�−�̃|2 EOC2

20×20 5.000000e−02 3.553001e−02 5.088527e−02
40×40 2.500000e−02 2.603677e−02 0.4485 4.052730e−02 0.3284
80×80 1.250000e−02 1.723002e−02 0.5956 2.910075e−02 0.4778
160×160 6.250000e−03 1.120914e−02 0.6202 2.104956e−02 0.4673
320×320 3.125000e−03 7.298787e−03 0.6189 1.571074e−02 0.4220

N h=1.5�x |�−�̃|1 EOC1 |�−�̃|2 EOC2

20×20 7.500000e−02 4.427848e−02 5.966602e−02
40×40 3.750000e−02 3.029744e−02 0.5474 4.500231e−02 0.4069
80×80 1.875000e−02 2.056287e−02 0.5592 3.276041e−02 0.4580
160×160 9.375000e−03 1.368476e−02 0.5875 2.404254e−02 0.4464
320×320 4.687500e−03 9.053464e−03 0.5960 1.813783e−02 0.4066

N h=2�x |�−�̃|1 EOC1 |�−�̃|2 EOC2

20×20 1.000000e−01 4.924631e−02 6.400495e−02
40×40 5.000000e−02 3.534180e−02 0.4786 5.035410e−02 0.3461
80×80 2.500000e−02 2.460084e−02 0.5227 3.740869e−02 0.4287
160×160 1.250000e−02 1.666850e−02 0.5616 2.770045e−02 0.4335
320×320 6.250000e−03 1.110999e−02 0.5853 2.084552e−02 0.4102
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–e

rr
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Figure 11. Discrete L1-error (left) and L2-error (right) of the density for the shock tube problem, at time
T =0.15, using N =n×n quasi-random particles, for different h.

convergence rate does not depend on h. Furthermore, we remark that the error slightly increases
with h. This is in agreement with the results obtained in Figure 10. However, in this case, the
convergence rate does not approach the theoretical order one of convergence for smooth solutions.
A similar convergence study, obtaining a similar convergence rate, is done in [1], also for the
shock tube problem considered here, but the computations are one dimensional.
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3.3. A linear advection equation

Let us consider a simple linear equation in order to study further the numerical convergence of
the FVPM, namely the following linear advection equation:

�t u+�xu=0 on [0,1]×[0,1] (47)

with a discontinuous initial condition

u0(x, y)=
{
1, x�0.5

0, x>0.5
(48)

or with a smooth initial condition

u0(x, y)=exp{−100((x−0.25)2+(y−0.25)2)} (49)

The exact solution to Equation (47) is simply given by u(x, y, t)=u0(x− t, y).
The approximate solution is computed at T =0.25, using N =80×80 quasi-random distributed

and non-moving particles with h=1.5�x . Outflow boundary conditions are used on all boundaries.
In Figure 12, the solution to the linear advection equation (47) with the discontinuous initial
condition (48), projected onto the u–x-plane, is shown. Then, in Figure 13, isolines of the exact
solution and of the approximate solution of (47) with the smooth initial condition (49) can be
found.

Finally, we compute numerical convergence rates in the discrete L1- and L2-norm for this linear
problem, to see if we obtain better rates than in the non-linear case. The error between the exact
solution and the approximate solution is computed for a sequence of N =20×20,40×40, . . . ,320×
320 quasi-random distributed particles, with different smoothing lengths h. In Tables II and III,
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Figure 12. Solution to the linear advection equation with the discontinuous initial condition (48), projected
onto the u–x-plane (the solid line) and the exact solution (the dotted line).
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Figure 13. Isolines of the approximate solution (left) and of the exact solution (right) at T =0.25, for the
linear advection equation (47) with the smooth initial condition (49).

Table II. Discrete L1- and L2-errors for the linear advection equation with a
discontinuous initial condition, for different h.

N h=�x |u− ũ|1 EOC1 |u− ũ|2 EOC2

20×20 5.000000e−02 5.333467e−02 1.310182e−01
40×40 2.500000e−02 3.603141e−02 0.5658 1.070453e−01 0.2915
80×80 1.250000e−02 2.419657e−02 0.5745 8.434356e−02 0.3439
160×160 6.250000e−03 1.738028e−02 0.4774 7.278524e−02 0.2126
320×320 3.125000e−03 1.227533e−02 0.5017 6.159035e−02 0.2409

N h=1.5�x |u− ũ|1 EOC1 |u− ũ|2 EOC2

20×20 7.500000e−02 7.515702e−02 1.524758e−01
40×40 3.750000e−02 4.959395e−02 0.5997 1.208166e−01 0.3358
80×80 1.875000e−02 3.397842e−02 0.5455 9.962925e−02 0.2782
160×160 9.375000e−03 2.457986e−02 0.4671 8.771474e−02 0.1838
320×320 4.687500e−03 1.746742e−02 0.4928 7.491543e−02 0.2276

N h=2�x |u− ũ|1 EOC1 |u− ũ|2 EOC2

20×20 1.000000e−01 9.600310e−02 1.735468e−01
40×40 5.000000e−02 6.332254e−02 0.6004 1.362808e−01 0.3487
80×80 2.500000e−02 4.349752e−02 0.5418 1.129455e−01 0.2710
160×160 1.250000e−02 3.128702e−02 0.4754 9.843819e−02 0.1983
320×320 6.250000e−03 2.221442e−02 0.4941 8.400084e−02 0.2288

the errors in the case of the jump solution and of the smooth solution, together with the EOC
computed from (46), are given. In Figure 14 we show the errors versus the number of points in
one direction in order to synthesize the results from Tables II and III and for a better comparison.
As expected, the numerical convergence rate does not depend on h. Our results show an EOC
which is less than the expected first-order convergence in the case of the smooth solutions.
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Table III. Discrete L1- and L2-errors for the linear advection equation with a
smooth initial condition, for different h.

N h=�x |u− ũ|1 EOC1 |u− ũ|2 EOC2

20×20 5.000000e−02 1.747204e−02 5.529881e−02
40×40 2.500000e−02 9.979376e−03 0.8080 3.382673e−02 0.7091
80×80 1.250000e−02 5.163706e−03 0.9505 1.808657e−02 0.9032
160×160 6.250000e−03 2.772294e−03 0.8973 1.011878e−02 0.8379
320×320 3.125000e−03 1.594091e−03 0.7983 5.705053e−03 0.8267

N h=1.5�x |u− ũ|1 EOC1 |u− ũ|2 EOC2

20×20 7.500000e−02 2.287496e−02 6.967677e−02
40×40 3.750000e−02 1.353946e−02 0.7566 4.515581e−02 0.6258
80×80 1.875000e−02 7.793727e−03 0.7968 2.727371e−02 0.7274
160×160 9.375000e−03 4.302940e−03 0.8570 1.544056e−02 0.8208
320×320 4.687500e−03 2.610491e−03 0.7210 9.359223e−03 0.7223

N h=2�x |u− ũ|1 EOC1 |u− ũ|2 EOC2

20×20 1.000000e−01 2.834719e−02 8.127777e−02
40×40 5.000000e−02 1.769121e−02 0.6802 5.676342e−02 0.5179
80×80 2.500000e−02 1.043911e−02 0.7610 3.569118e−02 0.6694
160×160 1.250000e−02 5.926685e−03 0.8167 2.104068e−02 0.7624
320×320 6.250000e−03 3.485152e−03 0.7660 1.262132e−02 0.7373
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Figure 14. Discrete L1-error (left) and L2-error (right) for the linear advection equation with smooth and
discontinuous initial conditions at time T =0.25, using N =n×n quasi-random particles, for different h.

4. CONCLUSIONS

In this paper we have further investigated the FVPM from a numerical and theoretical point of
view. We derived the FVPM for a system of conservation laws in a bounded and time-dependent
domain �(t)⊂Rd . Then we proved an approximation property of the reconstruction formula used
in the FVPM, namely the fact that the reconstruction formula is only of order one. Also a new
correction procedure, although only approximately conservative, was proposed.
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Furthermore, we presented here an application of the FVPM to a spatial two-dimensional
problem posed on a moving domain, where the meshless character of the method is exploited.
The particles are irregularly distributed in the domain and they are moving in a non-Lagrangian
way such that they smoothly follow the time-dependent computational domain. Numerical results
indicate that the method is well suited for such problems. Also the discretization of the boundary
conditions works very satisfactory. Thus, a first step to applying the FVPM to real fluid–structure
interaction problems, which in general limit the use of grid-based methods, is done. Finally, a
convergence study for a shock tube problem and a simple linear advection equation was done.
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